An Adaptive Approach to Granular Real-Time Anomaly Detection
نویسندگان
چکیده
Anomaly-based intrusion detection systems have the ability to detect novel attacks, but when applied in real-time detection, they face the challenges of producing many false alarms and failing to match with the high speed of modern networks due to their computationally demanding algorithms. In this paper, we present Fates, an anomaly-based NIDS designed to alleviate the two challenges. Fates views the monitored network as a collection of individual hosts instead of as a single autonomous entity and uses dynamic, individual threshold for each monitored host, such that it can differentiate between characteristics of individual hosts and can independently assess their threat to the network. Each packet to and from a monitored host is analyzed with an adaptive and efficient charging scheme that considers the packet type, number of occurrences, source, and destination. The resulting charge is applied to the individual hosts threat assessment, providing pinpointed analysis of anomalous activities. We use various datasets to validate Fates ability to distinguish scanning behavior from benign traffic in real time.
منابع مشابه
Detecting and counting vehicles using adaptive background subtraction and morphological operators in real time systems
vehicle detection and classification of vehicles play an important role in decision making for the purpose of traffic control and management.this paper presents novel approach of automating detecting and counting vehicles for traffic monitoring through the usage of background subtraction and morphological operators. We present adaptive background subtraction that is compatible with weather and ...
متن کاملReal-time damage detection of bridges using adaptive time-frequency analysis and ANN
Although traditional signal-based structural health monitoring algorithms have been successfully employed for small structures, their application for large and complex bridges has been challenging due to non-stationary signal characteristics with a high level of noise. In this paper, a promising damage detection algorithm is proposed by incorporation of adaptive signal processing and Artificial...
متن کاملADAPTIVE ORDERED WEIGHTED AVERAGING FOR ANOMALY DETECTION IN CLUSTER-BASED MOBILE AD HOC NETWORKS
In this paper, an anomaly detection method in cluster-based mobile ad hoc networks with ad hoc on demand distance vector (AODV) routing protocol is proposed. In the method, the required features for describing the normal behavior of AODV are defined via step by step analysis of AODV and independent of any attack. In order to learn the normal behavior of AODV, a fuzzy averaging method is used fo...
متن کاملBehavior-Based Online Anomaly Detection for a Nationwide Short Message Service
As fraudsters understand the time window and act fast, real-time fraud management systems becomes necessary in Telecommunication Industry. In this work, by analyzing traces collected from a nationwide cellular network over a period of a month, an online behavior-based anomaly detection system is provided. Over time, users' interactions with the network provides a vast amount of usage data. Thes...
متن کاملF-STONE: A Fast Real-Time DDOS Attack Detection Method Using an Improved Historical Memory Management
Distributed Denial of Service (DDoS) is a common attack in recent years that can deplete the bandwidth of victim nodes by flooding packets. Based on the type and quantity of traffic used for the attack and the exploited vulnerability of the target, DDoS attacks are grouped into three categories as Volumetric attacks, Protocol attacks and Application attacks. The volumetric attack, which the pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- EURASIP J. Adv. Sig. Proc.
دوره 2009 شماره
صفحات -
تاریخ انتشار 2009